Аппаратно программные платформы корпоративных информационных систем

Пример устранения конфликтов компилятором



Рисунок 5.13. Пример устранения конфликтов компилятором

В результате устранены обе блокировки (командой LW Rc,c команды ADD Ra,Rb,Rc

и командой LW Rf,f команды SUB Rd,Re,Rf). Имеется зависимость между операцией АЛУ и операцией записи в память, но структура конвейера допускает пересылку результата с помощью цепей "обхода". Заметим, что использование разных регистров для первого и второго операторов было достаточно важным для реализации такого правильного планирования. В частности, если переменная e была бы загружена в тот же самый регистр, что b или c, такое планирование не было бы корректным. В общем случае планирование конвейера может требовать увеличенного количества регистров. Такое увеличение может оказаться особенно существенным для машин, которые могут выдавать на выполнение несколько команд в одном такте.

Многие современные компиляторы используют технику планирования команд для улучшения производительности конвейера. В простейшем алгоритме компилятор просто планирует распределение команд в одном и том же базовом блоке. Базовый блок представляет собой линейный участок последовательности программного кода, в котором отсутствуют команды перехода, за исключением начала и конца участка (переходы внутрь этого участка тоже должны отсутствовать). Планирование такой последовательности команд осуществляется достаточно просто, поскольку компилятор знает, что каждая команда в блоке будет выполняться, если выполняется первая из них, и можно просто построить граф зависимостей этих команд и упорядочить их так, чтобы минимизировать приостановки конвейера. Для простых конвейеров стратегия планирования на основе базовых блоков вполне удовлетворительна. Однако когда конвейеризация становится более интенсивной и действительные задержки конвейера растут, требуются более сложные алгоритмы планирования.

К счастью, существуют аппаратные методы, позволяющие изменить порядок выполнения команд программы так, чтобы минимизировать приостановки конвейера. Эти методы получили общее название методов динамической оптимизации (в англоязычной литературе в последнее время часто применяются также термины "out-of-order execution" - неупорядоченное выполнение и "out-of-order issue" - неупорядоченная выдача).
Каждый новый результат записывается в новый физический регистр. Однако предыдущее значение каждого логического регистра сохраняется и может быть восстановлено в случае, если выполнение команды должно быть прервано из-за возникновения исключительной ситуации или неправильного предсказания направления условного перехода.

В процессе выполнения программы генерируется множество временных регистровых результатов. Эти временные значения записываются в регистровые файлы вместе с постоянными значениями. Временное значение становится новым постоянным значением, когда завершается выполнение команды (фиксируется ее результат). В свою очередь, завершение выполнения команды происходит, когда все предыдущие команды успешно завершились в заданном программой порядке.

Программист имеет дело только с логическими регистрами. Реализация физических регистров от него скрыта. Как уже отмечалось, номера логических регистров ставятся в соответствие номерам физических регистров. Отображение реализуется с помощью таблиц отображения, которые обновляются после декодирования каждой команды. Каждый новый результат записывается в физический регистр. Однако до тех пор, пока не завершится выполнение соответствующей команды, значение в этом физическом регистре рассматривается как временное.

Метод переименования регистров упрощает контроль зависимостей по данным. В машине, которая может выполнять команды не в порядке их расположения в программе, номера логических регистров могут стать двусмысленными, поскольку один и тот же регистр может быть назначен последовательно для хранения различных значений. Но поскольку номера физических регистров уникально идентифицируют каждый результат, все неоднозначности устраняются.


Содержание раздела